Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
International Journal of Oral Science ; (4): 17-17, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982475

RESUMO

Oral squamous cell carcinoma (OSCC) escape from the immune system is mediated through several immunosuppressive phenotypes that are critical to the initiation and progression of tumors. As a hallmark of cancer, DNA damage repair is closely related to changes in the immunophenotypes of tumor cells. Although flap endonuclease-1 (FEN1), a pivotal DNA-related enzyme is involved in DNA base excision repair to maintain the stability of the cell genome, the correlation between FEN1 and tumor immunity has been unexplored. In the current study, by analyzing the clinicopathological characteristics of FEN1, we demonstrated that FEN1 overexpressed and that an inhibitory immune microenvironment was established in OSCC. In addition, we found that downregulating FEN1 inhibited the growth of OSCC tumors. In vitro studies provided evidence that FEN1 knockdown inhibited the biological behaviors of OSCC and caused DNA damage. Performing multiplex immunohistochemistry (mIHC), we directly observed that the acquisition of critical immunosuppressive phenotypes was correlated with the expression of FEN1. More importantly, FEN1 directly or indirectly regulated two typical immunosuppressive phenotype-related proteins human leukocyte antigen (HLA-DR) and programmed death receptor ligand 1 (PD-L1), through the interferon-gamma (IFN-γ)/janus kinase (JAK)/signal transducer and activator transcription 1 (STAT1) pathway. Our study highlights a new perspective on FEN1 action for the first time, providing theoretical evidence that it may be a potential immunotherapy target for OSCC.


Assuntos
Humanos , Carcinoma de Células Escamosas/patologia , DNA , Regulação para Baixo , Endonucleases Flap/metabolismo , Neoplasias de Cabeça e Pescoço , Interferon gama/metabolismo , Neoplasias Bucais/patologia , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Janus Quinases/metabolismo
2.
International Journal of Oral Science ; (4): 12-12, 2021.
Artigo em Inglês | WPRIM | ID: wpr-880866

RESUMO

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Assuntos
Humanos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias de Cabeça e Pescoço , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Fosfofrutoquinase-2/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA